Polynomials on Banach Spaces with Unconditional Bases

نویسنده

  • BOGDAN C. GRECU
چکیده

We study the classes of homogeneous polynomials on a Banach space with unconditional Schauder basis that have unconditionally convergent monomial expansions relative to this basis. We extend some results of Matos, and we show that the homogeneous polynomials with unconditionally convergent expansions coincide with the polynomials that are regular with respect to the Banach lattices structure of the domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O ct 1 99 6 UNIQUENESS OF UNCONDITIONAL BASES IN BANACH SPACES

We prove a general result on complemented unconditional basic sequences in Banach lattices and apply it to give some new examples of spaces with unique unconditional basis. We show that Tsirelson space and certain Nakano spaces have unique unconditional bases. We also construct an example of a space with a unique unconditional basis with a complemented subspace failing to have a unique uncondit...

متن کامل

NEW EXAMPLES OF c 0 - SATURATED BANACH SPACES II

For every Banach space Z with a shrinking unconditional basis satisfying an upper p-estimate for some p > 1, an isomorphically polyhedral Banach space is constructed which has an unconditional basis and admits a quotient isomorphic to Z. It follows that reflexive Banach spaces with an unconditional basis and non-trivial type, Tsirelson's original space and (P c0) ℓp for p ∈ (1, ∞), are isomorph...

متن کامل

UNCONDITIONALITY IN SPACES OF m-HOMOGENEOUS POLYNOMIALS

Let E be a Banach space with an unconditional basis. We prove that for m 2 the Banach space P(m E) of all m-homogeneous polynomials on E has an unconditional basis if and only if E is finite dimensional. This answers a problem of S. Dineen.

متن کامل

Uniqueness of Unconditional Bases in Quasi-banach Spaces with Applications to Hardy Spaces

We prove some general results on the uniqueness of unconditional bases in quasiBanach spaces. We show in particular that certain Lorentz spaces have unique unconditional bases answering a question of Nawrocki and Ortynski. We then give applications of these results to Hardy spaces by showing the spaces Hp (T n) are mutually non-isomorphic for differing values of n when 0 < p < 1.

متن کامل

SUBSPACES CONTAINING BIORTHOGONAL FUNCTIONALS OF BASES OF DIFFERENT TYPES M.I.Ostrovskii

The paper is devoted to two particular cases of the following general problem. Let α and β be two types of bases in Banach spaces. Let a Banach space X has bases of both types and a subspace M ⊂ X∗ contains the sequence of biorthogonal functionals of some α-basis in X. Does M contain a sequence of biorthogonal functionals of some β-basis in X? The following particular cases are considered: (α, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004